from ga_fcc_alloys_relax import relax from ase.ga.convergence import GenerationRepetitionConvergence from ase.ga.data import DataConnection from ase.ga.element_crossovers import OnePointElementCrossover from ase.ga.element_mutations import RandomElementMutation from ase.ga.offspring_creator import OperationSelector from ase.ga.population import Population # Specify the number of generations this script will run num_gens = 40 db = DataConnection('fcc_alloys.db') ref_db = 'refs.db' # Retrieve saved parameters population_size = db.get_param('population_size') metals = db.get_param('metals') # Specify the procreation operators for the algorithm # Try and play with the mutation operators that move to nearby # places in the periodic table oclist = ([1, 1], [RandomElementMutation(metals), OnePointElementCrossover(metals)]) operation_selector = OperationSelector(*oclist) # Pass parameters to the population instance pop = Population(data_connection=db, population_size=population_size) # We form generations in this algorithm run and can therefore set # a convergence criteria based on generations cc = GenerationRepetitionConvergence(pop, 3) # Relax the starting population while db.get_number_of_unrelaxed_candidates() > 0: a = db.get_an_unrelaxed_candidate() relax(a, ref_db) db.add_relaxed_step(a) pop.update() # Run the algorithm for _ in range(num_gens): if cc.converged(): print('converged') break for i in range(population_size): a1, a2 = pop.get_two_candidates(with_history=False) op = operation_selector.get_operator() a3, desc = op.get_new_individual([a1, a2]) db.add_unrelaxed_candidate(a3, description=desc) relax(a3, ref_db) db.add_relaxed_step(a3) pop.update() # Print the current population to monitor the evolution print(['-'.join(p.get_chemical_symbols()) for p in pop.pop])